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Introduction
Solving flow problems in compressible or incompressible regimes has been,
historically, a very different matter. There are mainly two difficulties associated
with incompressible flows, namely a compatibility condition on the
interpolation spaces and bad conditioning of the system matrices. Compressible
codes generally use equal-order interpolations. If such a compressible code is
used in a nearly incompressible flow pattern, i.e. with a Mach number M << 1,
then oscillations in pressure (“checkerboard modes”) are likely to appear.
Moreover, these oscillations are likely to occur in locally incompressible regions,
like stagnation points, embedded in a globally compressible flow[1]. The subject
has been extensively studied by numerical analysts and the conclusion is that
the interpolation spaces must satisfy a stability condition named the LBB
condition[2,3]. On the other hand, compressible flows can be solved with explicit
schemes. If the objective is to reach the steady state, then, with techniques like
local time stepping and absorbing boundary conditions, an efficient, easy to
code and highly parallelizable algorithm requiring a very low amount of core
memory is obtained. However, in the limit of incompressible flows, the rate of
convergence drops like 1/M owing to bad conditioning, and the strategy
becomes unfeasible.

In this work, these two difficulties are addressed. First, a stabilized algorithm
is presented for the incompressible or nearly incompressible Navier-Stokes
equations, allowing equal-order interpolations. The stabilization terms are
obtained as a straightforward extension of the SUPG (Streamline Upwind
Petrov-Galerkin) method to multidimensional advective-diffusive systems of
equations. Second, it is shown how the explicit scheme can be used in the
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incompressible regime through the use of a specially devised preconditioning.
Using these techniques, rates of convergence independent of Mach number are
achieved and the compressible explicit code can be used in the incompressible
limit.

Stabilized methods for incompressible flow
Conservative form of the Navier-Stokes equations

Navier-Stokes equations written in conservative form are:

(1)

Implicitly we assume ( ), i = ∂( )/∂xi.
U ∈ IR5 is the fluid local state vector, where U = [ρ, ρuT, ρe]T, with ρ, u, e as

the density, velocity and total energy of the fluid. Fa, Fd ∈ IR5×3 are the
advective and diffusive fluxes respectively, which depend on the state vector
and its gradient as:

(2)

where p, τ, q are the thermodynamic pressure, the stress deviatoric tensor and
the heat flux vector respectively, with

(3.1)

(3.2)
where µ is the dynamic viscosity, λ is the second viscosity coefficient, κ the
thermal conductivity and θ the temperature. The right-hand side term b
involves body forces and exteral heat-sources. The description of the
mathematical model finishes with an introduction of the state equation of the
fluid and the relation between the energy and two of the thermodynamic
variables of the fluid

(4)

Numerical spatial discretization – A Petrov-Galerkin formulation overview
The numerical formulation is based on the Petrov-Galerkin weighted residual
method which allows test functions that can be different from the interpolation
ones and not necessarily continuous. This method introduces the numerical
dissipation needed to stabilize the system in advection-dominated problems,
keeping the consistency with the continuum problem, and is one of the most
referenced in the CFD area by the finite element method[4,5].

To fix ideas suppose that:

(5)
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where Ai and Kij are constant matrices. For each node a there is an interpolation
function Na (hat type in 1D, bilinear in 2D and multilinear in general) and a test
function Wa = Na + Pa, where Pa is called the perturbation function. The
standard Galerkin method is recovered when we impose Pa ≡ 0. The Wa (and, of
course, Pa ) are not necessarily continuous through the inter-element boundaries.
The variational formulation employed is:

(6)

where h is the diffusive flux imposed on the boundary Γh. The Euler-Lagrange
form is obtained through classical integration by parts:

(7)

where:

(8)

is the jump in the diffusive flux throughout the inter-element boundary, x is a
point which lies there, x± are points belonging to each side of the boundary and
Γ int is the inter-element contour. Consistency is warranted because the
continuum solution is also solution of this variational formulation.

In the following sections, the type of perturbation function used is described.
The simple scalar one-dimensional problem is investigated and then these
results are extended to multidimensional systems.

One-dimensional scalar advection-diffusion equation. In the scalar case:
(9)

is the equation to be solved where a is the advection velocity of the fluid, k is the
diffusivity and u the dependent variable. By a centred finite difference scheme
or, similarly, by a finite element (Galerkin method) formulation, the following
linear system on a homogeneous grid of spacing ∆x is obtained:

(10)

The truncation error is O(∆x2), but it produces wiggles for advection-dominated
problems characterized by a Pèclet number Pe = u∆x/k >> 1. In a finite
difference context it is well known that the previous defect is solved by the
introduction of artificial diffusion or by an upwinding technique. Exact nodal
values can be obtained if the numerical diffusion is adjusted according to a
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certain expression which is then called the “magic function”. This phenomenon
is known as “super-convergence”. In an FEM context, this scheme can be cast as
a Petrov-Galerkin formulation if the perturbation function for the node i is taken
as:

(11)

where the magic function is defined as (see Figure 1):

(12)

τ is called, in SUPG terminology, an intrinsic time scale. An interesting
advantage of this kind of test functions is that it produces a conservative
scheme.

The multidimensional version of (1) without source term B is:

(13)

where m is the number of equations of the system. The generalization from the
scalar to the system case consists in finding a similarity transformation to carry
the system to a set of m uncoupled advective-diffusive scalar equations. A new
variable vector U = SV is defined, where S is a non-singular change of basis
matrix to be determined, and the whole system is multiplied by S–1 K–1. Then
the problem is reduced to find a matrix S that solves the following eigenvalue
problem:

(14)

Figure 1.
Magic functions ψ and
φ (Pe)
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with Λ diagonal matrix. For symmetrizable parabolic systems, it is always
possible to find the above matrix. After some algebra[6], the perturbation
function can be expressed as:

(15)

where the φ function is associated to the ψ one and defined as:

(16)

(see Figure 1). Note that, as:

ø (0), then ø is regular at x = 0 (17)

Note the parallelism between equations (11) and (15).
An interesting property of this choice for the matrix of intrinsic time scales

is that it extends the phenomenon of superconvergence to systems, i.e. exact
nodal values are obtained for a restricted class of problems (constant grid size,
no source term, constant Jacobians). As far as the authors are aware, this result
has not been reported previously in the literature. With respect to the additional
cost, the basic problem is the eigenvalue decomposition in (14). It can be shown
that, for the Navier-Stokes equations, the eigenvalue problem can ve reduced by
symmetry and invariance considerations from a quintic to a cubic, which is
then solved by Cardano’s formula. Once the eigenvalues are obtained, the
eigenvectors follow by standard algebra.

Application to the Navier-Stokes equations. The method described so far is
not applicable to the Navier-Stokes system since the corresponding Kii matrices
are singular in this case. For this reason, the eigenvalue problem (14) is
degenerated and the limit value of its eigenvalue is undetermined. To solve this
problem, the system is regularized, adding a small positive quantity ε to the null
diagonal element of the Kii matrices. We stress the fact that this parameter ε is
only introduced in order to compute the weight functions for the SUPG method
so that the discrete scheme continues to be a weighted residual formulation of
the unmodified (i.e. without the ε) set of equations. The influence of this
parameter on the precision and stability of the scheme will be analysed in the
next section.

With respect to the extension to the multidimensional case, the following
composition rule for the matrix of intrinsic time scales is adopted:

(18)

where

(19)
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Analysis of the stabilizing terms for the incompressibility condition in the
Stokes equations
In what follows, the kind of scheme obtained for the Stokes equations will be
demonstrated, and it will be compared to other types of stabilization technique.
The Stokes equations under consideration are:

(20)

This system can be put in the context of homogeneous linear advective-diffusive
systems (13) through the following definition of the flux Jacobians:

(21)

k is an arbitrary wave number vector. Now we will compute the matrix of
intrinsic time scales and the weight functions from expressions (15,18,19). As
previously mentioned, the Kii are singular and, therefore, we add a parameter ε
to the null diagonal term:

(22)

Now, the matrices of intrinsic time scales can be computed with the aid of
equation (19) and the result is:

(23)

where ξ = ψ(h/√εν and diag{a, b, c, …} is a diagonal matrix with diagonal
entries a, b, c, … Similar expressions are obtained for the other directions.
Finally the expression for τ is obtained from (18):

(24)

Note that in the limit ε → 0 we have: ξ → 1, α → (h/2) √––ε/ν and β → (h/6) √––ν/ε.
The discrete system corresponds to a centred (Galerkin) discretization of the

following modified system:

(25)

and it can be obtained from the original Stokes system by adding – β times the
gradient of the continuity equation to the momentum equation, and – α times
the divergence of the momentum equation to the continuity equation. Since the
systems are equivalent, the resulting stabilized scheme has the same precision
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(in the sense of order of truncation error) independently from α and β. However,
the term – α∇ 2p changes completely the nature of the equation since, now, it is
a second-order equation on p and an additional boundary condition has to be
imposed on pressure.

With respect to the influence of α and β on stability, an in-depth discrete
Fourier analysis has been made, but only the relevant results will be presented
here. For a complete analysis see [6]. Here, the analysis will be limited to a
structured grid composed of Q1/Q1 elements (quadrangles with bilinear
interpolation for velocities and pressures) (see Figure 2). 

Moreover, only one-dimensional variations are considered so that the index j
can be dropped and the resulting discrete system of equations is:

(26)

First, note that if α = 0 (Galerkin formulation), the pressure is determined up to
an arbitrary component of the form pl = p–(–1)l. This high-frequency mode is
detected in the form of spurious oscillations in pressure and is termed a

Figure 2.
Structured mesh

composed of Q1/Q1
elements
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“checkerboard mode”. A deeper Fourier analysis can be performed by putting
fxl and fy,l in the form of a plane wave fx,l = f̂xe

ikxl, with the wave number |k| <
π/h and xl = lh. It turns out to be that ul, vl and pl have, up to a constant, the same
form pl = p̂eikxl, etc. Replacing these expressions in (26) we arrive at:

(27)

with:

(28)

(29)

Gp,fx is a response function and we call γ the stability parameter. In Figure 3, we
can see the response curves as a function of kh for several values of γ. For γ = 0,
Gp,fx → ∞ as k →π/h. This corresponds to the unstable mode pl ∝ (–1)l that we
mentioned previously for the Galerkin formulation. If γ is very low, the
response function is bounded and Gp,fx = 0 for kh = π, but it has a sharp peak
at some point near kh → π. This means that, notwithstanding the fact that the
response function is bounded, spurious oscillations could occur. On the other
hand, if γ is too high, the response curve drops below the exact response curve,
giving rise to an over-diffusive algorithm. It can be seen that, for a stability
parameter γ ≈ 1, the response curve is closest to the exact one. This analysis is
valid for all stabilized methods, provided that the stabilizing terms can be put in
the form of (25). For instance, the case α = β = 0 corresponds to the Galerkin
non-stabilized case. Obviously, γ = 0 and the scheme is unstable. The case 

Figure 3.
Response curves for
several global stability
parameters γ
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β = 0, α = α ′h2/2v  corresponds to the stabilized method of Hughes et al.[2] (α′
here corresponds to α in their work). For this method γ = 8α′. In that work, it is
reported that the scheme is highly oscillatory for α′ < 0.01 (γ < 0.08), whereas
no oscillations were observed for α′ > 0.1 (γ > 0.8). These results confirm the
stability analysis performed here. On the other hand, the scheme from Frey et
al.[3] (in the Stokes regime and for linear elements) is obtained with α = mh2/8v,
β = λmu2h2/4v, where u is the local velocity and λ, m are O(1) constants, defined
in their work. On the other hand, in our method γ is linked to ε through
equations (24) and (29). However, the predicted value for γ falls always in the
interval 0.4 < γ < 1.4, irrespective of the value chosen for ε. In conclusion, the
method presented here is stable and is “parameter free” in the sense that,
notwithstanding the fact that a “free” parameter ε is introduced, stability is
assured independently of the value of ε.

Numerical examples
The first example is the well known test of the square, lid-driven cavity. Here,
we present results for Re = 1, 40, 100. Figure 4 shows the problem description.
In Figures 5-7, the velocity field is shown for each Reynolds number and
included in it is the reference position of the principal vortex centre obtained
from Schreiber and Keller[7]. A mesh composed of 20 × 20 elements has been
used in all cases. The results presented here are in close agreement with the
referenced ones.

Figure 4.
Lid-driven square-cavity

– problem description
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Figure 5.
Lid-driven square-cavity
– velocity field for
Re = 1

Figure 6.
Lid-driven square-cavity
– velocity field for
Re = 40
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Figure 7.
Lid-driven square-cavity

– velocity field for
Re = 100

Figure 8.
Multiply-connected

lid-driven square-cavity
– streamlines for

Re = 0
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Figure 9.
Multiply-connected 
lid-driven square-cavity
– streamlines for
Re = 50

Figure 10.
Multiply-connected 
lid-driven square-cavity
– streamlines for
Re = 250
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The second example consists of a lid-driven flow in a square cavity but, now,
with two internal obstacles. This problem is referenced as the multiply-
connected lid-driven square cavity[8]. The rectangular obstacles are centred at
(x, y) = (1⁄3, 1⁄2) and (2⁄3, 1⁄2), and they have a thickness of 1⁄15 and a height of 1⁄3. We
solved for Re = 0, 50, 250 and in Figures 8-10 the streamlines derived from the
numerical results are shown. They were compared with published results by
Lipke and Wagner[8], using a similar quantity of nodes, (≈ 3,600) and appear to
be in close agreement with them.

In all cases , Mach numbers below 0.05 were used, and ε was selected
according to ε = ε̃h2/ν, with ε̃ = 1.

Iterative solution of large systems with explicit pseudo-temporal
schemes
A very common procedure in order to find steady states from non-linear
equations arising in computational fluid dynamics, say F(x) = 0, is to iterate an
explicit or implicit temporal scheme until convergence[9,10]: Mx• = F(x), t → ∞.
Here x ∈ IRN is the state vector, F is a map from IRN onto itself that represents
the discrete system of equations, M is the mass matrix of the system and the dot
represents the time derivative. If an explicit scheme is used, comparatively low
amounts of core memory and large CPU times are required. Moreover, the CPU
time highly depends on the conditioning of the system. Bad conditioning of the
system is caused by several multiplicative factors like: large variations in
element size through the mesh, large variations in edge sizes for a given element
and local incompressible (M → 0) or transonic (M → 1) behaviour, where M is
the Mach number. On the other hand, if an implicit temporal scheme coupled to
a direct solver is preferred, very large convergence rates are achieved, but it
requires a large amount of memory to factorize the associated matrix. This
problem can be partially overcome by solving the linear subproblems by an
iterative “black-box” solver like GMRES (generalized minimal residual), BiCG
(bi-conjugate gradient) etc. The amount of core memory is drastically reduced
at the expense of an increased CPU time which, again, highly depends on the
conditioning of the system. The success of an iterative scheme (either explicit or
implicit) is, then, related to improving the conditioning of the system. For
instance, bad conditioning arising from large variations in mesh element size
can be removed through the use of a “local time stepping” strategy. Local time
stepping can be seen as modifying the mass matrix of the original system to
M̃x• = F(x) where M̃ is a diagonal matrix that includes a factor proportional to
the maximum admissible time step based on a local stability analysis. As is well
known, this modifies the temporal evolution of the state vector in such a way
that it has no more physical sense. Owing to this fact, it is only applicable when
looking for a steady state. Much in the same way, we look for mass matrices
which correct the bad conditioning associated with different characteristic
speeds at incompressible (M → 0) and transonic (M → 1) regimes. Of course,
some restrictions in the degree of connectivity of the proposed mass matrix
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have to be imposed. Otherwise, arbitrarily complex mass matrices can be
proposed, which reduce substantially the condition of the system, but whose
cost of computation is so high that the overall processing time is increased. Here
the focus is on the search for mass matrices, i.e. block-diagonal matrices with
each block connecting only the unknowns of each node. For these matrices, the
cost of the inversion (and then the cost per preconditioning cycle) is O(Nnod),
where Nnod is the total number of nodes in the mesh.

Convergence rate in explicit pseudo-temporal schemes
General considerations about rate of convergence in iterative systems. Let us
consider the one-step explicit pseudo-temporal scheme applied to a linear
system of ODEs like:

(30)

where K = (∂F/∂U) is the Jacobian of F and b is a constant right-hand side. The
ultimate rate of convergence (r.o.c.) of the scheme is defined so as (r.o.c.)–1 is the
number of iterations needed to reduce the residual by a factor of ten, and can be
computed as:

(31)

By standard eigenvalue decomposition, it can be shown that:

(32)

where {λµ} is the set of eigenvalues of M–1K. To obtain the highest rate of
convergence, we should choose a ∆t as high as possible but, as is well known,
such an explicit scheme has a maximum admissible time step ∆tcrit owing to
stability restrictions. On the other hand, the minimum in (32) will be attained
when |λµ| is small. For the smaller eigenvalues of systems coming from the
discretization by standard methods like FEM or FDM, the product |∆tcritλµ| is
much smaller than unity. The following approximation can then be made:

(33)

so that:

(34)

The critical time step is fixed by the high frequency, small wavelength
components, so that it is highly dependent on mesh size and discretization
scheme. On the other hand, the minimum eigenvalue is usually associated with
the smooth, large wavelength ones and can be computed directly from the
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continuum system. To fix ideas, the set of eigenvalues {λµ} for a simplified
continuum system will be computed.

Consider a linear, homogeneous, one-dimensional system like:

(35)

where U ∈ IR2 is the state vector and A ∈ IR2×2 is the advective flux Jacobian.
We suppose that A has two real eigenvalues {a+, – a–}, with a± > 0,
corresponding to a right- and left-moving component respectively. The
boundary and initial conditions are:

(36)

The Bs are 1 × 2 matrices since we have one ingoing and one outgoing wave at
each boundary.

The set of eigenvalues λµ can be determined by Laplace transform which, in
practice, is equivalent to search for solutions of the form: U(x, t) = e–λt Û(x). The
rate of convergence is given then by the λ with the lowest real part. Replacing
this particular form in (35):

(37)

whose solution is:

(38)

On the other hand, the boundary conditions are transformed to:

(39)

so that the equation we are looking for is:

(40)

Since the system is hyperbolic, a simpler expression can be obtained if we
switch to a basis of IR2, where A is diagonal. Let S be the change of basis matrix
such that S–1AS = diag{a+, – a–}, then:
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(41)

Transforming the boundary conditions into the eigencomponents:

(42)

and (40) simplifies to:

(43)

It can be shown that the B′ijs are related to the reflection coefficients R0,L at the
extremes of the domain through:

(44)

and, then, the equation (42) becomes:

(45)

from which the following expression for the set of eigenvalues {λµ} can be
obtained:

(46)

where σ = 0(1) if R0 RL is positive (negative). The real part is, then:

(47)

Equation (47) has a very clear physical meaning (see Figure 11). Consider a
smooth wave-packet that is being reflected back and forth between the two
boundaries. At each reflection, some part of the amplitude is absorbed  and,
since there is no dissipation in the interior, this is the unique mechanism of
amortiguation. To compute the rate of amortiguation, a complete cycle has to
be considered; for instance we begin to follow the packet just when it leaves
the left boundary at C, until it reaches the same position at E, after being
reflected at D and E. Re{λ} is, then, the logarithm of the amortiguation in the
cycle divided by the total duration of the cycle. The expression in the



denominator L[(1/a+) + (1/a–)] is the total duration of the cycle, and the
expression R0 RL appearing in the numerator is the attenuation owing to the
absorption at the boundaries. Usually, one has absorbing boundary conditions
at the boundaries. For 1D systems, completely absorbing boundary conditions
can be devised and R0, RL = 0. This implies an infinite rate of convergence, i.e.
the error is eliminated in a finite time: the time that it takes to arrive at the
completely absorbing boundary. However, in practical 2D or 3D situations, local
non-reflecting boundary conditions are completely absorbing only for normal
incident waves and, then, a globally non-infinite rate of convergence is
observed.

Figure 11.
Convergence by

absorption at the
boundaries. L = 1, a+ =

1, a– = 2. The
coefficients of reflection
are R0,1 = + 0.8 at each

boundary. The
perturbation at t = 0 is
a right-going gaussian
of width = 0.1 and unit

amplitude in u centered
at x = 0.3. It propogates
to the right and hits the

right boundary at t =
0.7. It is reflected to a

left-going v-wave of
amplitude 0.8 until it

hits the left-boundary at
t = 1.2. It is reflected

there to a right-going
u-wave of amplitude

0.64. At t = 1.5 it is at
the same place where

the process started and
the cycle restarts again

with a total loss of
amplitude in the cycle of

|R0 RL| = 0.64
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Rate of convergence in advective systems. Replacing (47) in (34):

(48)

The time step is made non-dimensional: ∆tcrit Ch/|a|max, where C is the Courant
number, which is restricted by the CFL condition to be smaller than unity, h is
the mesh size and amax = max {a+,a–}. Replacing the above expression for ∆tcrit
in (48) we obtain:

(49)

with:

(50)

and N = L/h is the number of elements. This expression for the rate of
convergence can be extended to multidimensional problems, replacing N by the
number of elements in a characteristic direction

N ~ Nnod
1/nd, (51)

and κ by an equivalent condition number based on group velocities (this will be
explained later). Here nd is the number of spatial dimensions.

In the rest of the work, we will focus on how to improve the r.o.c.s based on
the design of a good local preconditioning. This is done in two steps: the first
one is to improve the condition number κ based only on an analysis of the
continuum system. Once a good candidate is found, it must be verified by a
standard stability analysis how the corresponding critical Courant number is
modified, since it is included also in the expression for the r.o.c. (see equation
(48)). This is highly dependent on the discretization scheme, both spatial and
temporal. There exist cases where a given preconditioning improves the
conditioning of the system but, after a stability analysis, it is shown that this
“gain” is counteracted by a deterioration in the critical Courant number so that
no overall gain is produced.

Computation of condition number for multidimensional advective systems.
Now, the definition of the condition number is extended to the general
multidimensional case, laying stress on the Euler equations. As Fourier
analysis will be used, the analysis is restricted to the Cauchy problem (infinite
domain), linear, homogeneous (constant coefficients) multidimensional
advective systems of equations:

(52)
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where U(x, t) ∈ IRm is the state vector, {Aj}
nd
j=1 are the Jacobians of the advective

fluxes, Aj ∈ IRm×m, and M ∈ IRm×m is the mass matrix. Here, and in what
follows, the Einstein convention will be adopted. It is assumed that the system
is hyperbolic, i.e. for all k ∈ IRnd the matrix k · A = kjAj is diagonalizable with
real eigenvalues. Moreover, it is assumed that the system is symmetrizable, i.e.
there exists a non-singular matrix S, independent of k, for which S(k · A)S–1 is
symmetric for all k. The Euler equations fall into both categories. We look for
eigenfunctions in the form of plane waves:

(53)

Replacing (53) in (52), the following determinantal equation in ω is obtained:

(54)

and it results that Û has to be an eigenvector corresponding to the eigenvalue ω.
For each k ∈ IRnd a set of eigenvalues {ωµ(k)}m

µ=1 is obtained, which are called
the “branches of eigenvalues”. For the non-preconditioned system M = I, the
eigenvalues are real since the system is hyperbolic. This feature must be kept
by the preconditioning. For symmetrizable systems, a sufficient condition is
that M must be positive definite and symmetric in the basis where the Jacobians
are symmetric. Coming back to the expression for the plane wave (53), it can be
seen that constant amplitude planes Re {Ûexp{i(k · x – ωt)} = constant, have a
characteristic phase velocity:

(55)

However, it can be shown that energy and information propagate at the group
velocity:

(56)

For a complete description on Fourier analysis of discrete systems the reader is
referred to[11]. It is easy to see that the ωµs are homogeneous functions of
degree one in k, i.e. ωµ(αk) = αωµ(k) for α > 0. As a consequence, vgµ is
homogeneous of degree 0 and, then, it depends only on the direction of k:

(57)

The condition number κ is extended to the multidimensional case as:

(58)

where the maximum and minimum are taken over all and |k| = 1 and µ = 1, …,
m. Some tips and details of the calculation of group velocities can be found
in[12]
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PMM for compressible flows (review)
The compressible Euler equations in conservative form are:

(59)

where:

(60)

where U ∈ IRm is the state vector of the fluid, F ∈ IRm×nd are the advective
fluxes, ρ the density, u the velocity vector, p the pressure, e = p/[ρ(γ – 1)] + u2/2
the total energy, γ = 1.4 and m = 5 in 3D (m = nd + 2 in general). The Jacobians
of the fluxes are defined as:

(61)

and can be written in compact form as:

(62)

The system is symmetrizable and, then, hyperbolic, but it is not diagonalizable
in the multidimensional case. However, it is (trivially) diagonalizable in the one-
dimensional case. It is shown in [12] that an optimal preconditioning exists in
such cases, defining the preconditioning matrix as the absolute value (in the
matricial sense) of the one-dimensional Jacobian. This suggests several
possibilities in the multidimensional case:

(63)

(64)

(65)

The first two correspond to different versions of the absolute value of the
Jacobian vector and are optimal for diagonalizable systems. However, their
performance is very poor for the Euler equations which are not diagonizable, as
can be seen in Figure 12. The condition number for the preconditioned systems,
as well as for the non-preconditioned one, is shown. The last option (65)
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corresponds to the absolute value of the streamline projection of the Jacobians
(s stands for the streamline unit vector) and signifies a significant improvement
since it can be shown that the conditioning behaves like κs ≈ 2|1 – M|–1/2.

PMM for incompressible flows
For the incompressible regime, none of the above-mentioned possibilities
succeeded in giving a significant improvement in the conditioning of the
system. In fact, the PMMs from equations (63) or (64) have a condition number
O(1) as M → 0, so that it is clear that they can not correct the singularity. (A
badly conditioned matrix cannot be corrected by a well-conditioned one).
Regarding the streamline based Ms from equation (65), the conditioning is
even worse than the non-preconditioned system. In Figures 13 and 14 the
locus of the group velocity vector can be seen in the (vgx, vgy) plane for M = 0.1
to 0.6 with ∆M = 0.1 and M = I , Ms. As is well known, for the non-
preconditioned system the locus for the branches corresponding to pressure
waves are circles of unit radius centred at (M, 0), whereas the entire branch for
advection of vorticity is collapsed in a point at (M, 0). The maximum absolute
group velocity is attained for a pressure wave (i.e. a mode located on the
pressure branch) propagating in the same direction of the flow. The minimum
absolute group velocity corresponds to vorticity waves for 0 ≤ M ≤ 0.5 and to
the pressure wave that propagates in the direction opposite to the flow for M
≥ 0.5.

Preconditioning by diagonal scaling. The preconditioning proposed for the
incompressible case here is based on three different scaling parameters for the

Figure 12.
Condition number of the

continuum system for
several preconditionings
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Figure 13.
Locus of group
velocities for the
non-preconditioned
system M = I. The locus
has been plotted for
M = 0.1 to 0.6 with a
step of 0.1. The
branches of group
velocities are indicated
by points. For each
Mach number two
circles centred at the
origin and with radii
|vg|max,min have been
drawn

Figure 14.
Same as Figure 13 but
for M = Ms
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continuity, momentum and energy equations, and a detailed analysis has been
performed[12]. The preconditioned matrix is:

(66)

The locus of group velocities for M = 0.1 to 0.6 is shown in Figure 15. Note that
both circles at the maximum and minimum group velocities approach a defined
value as M → 0, so that the condition number remains bounded for κinc → 2 for
M → 0.

As we mentioned earlier, the stability of the discretized preconditioned
system was checked. The integration scheme is the standard forward-Euler,
and the spatial discretization is based on SUPG. For this combination, the
stability analysis shows that the minimum admissible Courant number is
always above 0.64, so that stability does not reduce the gain in the condition
number. However, for a spatial discretization based on Taylor-Galerkin, the
Courant number was so low that no gain in the overall processing time was
obtained. This was interpreted as a consequence of the over-diffusive character
of the Taylor-Galerkin method.

Regarding the cost of implementation of this preconditioning, it is negligible
when compared with the cost of the evaluation of the residual. It amounts
mainly to the multiplication of the residual of each equation by the inverse of

Figure 15.
Same as Figure 13 but

for M = Minc
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the corresponding diagonal element in the preconditioning matrix. This
multiplication must be performed for each node, at update time.

Accuracy improvement. Another topic to be discussed is how the
preconditioning affects the accuracy of the solution. First of all, it should be
pointed out that preconditioning and discretization do not commute, i.e. the
discrete solution for the steady state of the preconditioned system is not the
same as for the non-preconditioned one. Of course, both converge to the
continuum steady solutions as the mesh is refined. The non-equivalence of the
steady state discrete solutions is because the stabilizing “upwind” terms (in our
case, taken from SUPG) are not the same. The question that arises is whether
the numerical solution is improved or deteriorated by the preconditioning. It is
well known that accuracy problems can arise in nearly incompressible flows.
The subject has been extensively studied in the context of Navier-Stokes
equations. For the Euler equations, the problem has received much less
attention because it is not commonly used for solving incompressible inviscid
flows with this system. However “checkerboard”-type instabilities have been
reported in stagnation points[1]. Surprisingly enough, experiments have shown
that the numerical solutions are much improved when this preconditioning is
used, as will be reported in the numerical results. We do not have a full
explanation of this phenomenon yet, but at first sight it seems reasonable that
the stabilization scheme will work better for a well-conditioned problem.

Numerical results
Rate of convergence. In Figure 16 the convergence history can be seen for the
circular bump (thickness = 12 per cent) at M = 10–3 with the non-preconditioned
scheme and the preconditioning mass matrix presented in this paper. It can be
seen that a significant improvement in the rate of convergence is achieved.
Initially, for the non-preconditioned case, the residual has a relatively high r.o.c.
of roughly (r.o.c.)–1 = 70 iterations/order with a highly oscillatory component,
but it switches later to a smooth curve with a very low (and with a tendency to
decrease) r.o.c. of (r.o.c.)–1 = 6,200 iterations/order. This behaviour is explained
as follows: initially the error is mainly in the continuity equation which
generates pressure waves which have a high group velocity and then a high rate
of convergence. The oscillations are caused by reflections at the lateral slip
boundaries (absorbing boundary conditions are used at the inlet and outlet
boundaries). At a certain moment, the component of the error in the form of
pressure waves has been dissipated, and that component in the form of
vorticity remains almost with the same amplitude, since it has a much lower
group velocity. From this point onwards, the r.o.c. is dominated by that of the
vorticity waves, since they are the main component of the error. Since vorticity
is propagated downstream, there is no possibility of reflections at the slip
boundaries. This explains the smooth behaviour of the second part of the curve.
With regard to the preconditioned case, all equations have almost the same rate
of convergence of (r.o.c.)–1 ≈ 370 iterations/order.
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The second example is a flow around a Joukowski profile (12 per cent thickness,
4.6 per cent camber) with an angle of attack α = – 0.89˚ and a Mach number M
= 10–3. As in the previous case, Figure 17 shows the convergence histories for
the non-preconditioned system and for the proposed preconditioning. The non-

Figure 16.
Convergence history for

the bump at M = 10–3,
without (left) and with

(right) preconditioning.
Each curve corresponds
to the r.m.s.-norm of the

vector of nodal residuals
per equation

Figure 17.
Convergence history for

the Joukowski profile
(12 per cent thickness,
4.6 per cent camber) at

an angle of attack
α = – 0.8872˚ and

M = 10–3, without (left)
and with (right)
preconditioning
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preconditioned system has an r.o.c. ranging from (r.o.c.)–1 = 3,450
iterations/order for the energy and continuity equations, to 15,000
iterations/order for the momentum equations. Of course, the global r.o.c. of the
system is given by the worst one. In contrast, for the preconditioned system
(r.o.c.)–1 ≈ 480 iterations/order for all the equations.

Accuracy. For the case of the circular bump considered in the previous
paragraph, we take as reference a BEM (boundary element method)
computation for incompressible potential flow, since the compressible effects
are negligible, owing to the very low Mach number. We start with a relatively
coarse mesh (11 elements on the chord) and in Figure 18 we show the Cp
distribution curve on the x-axis and the profile with and without
preconditioning. It can be seen that the checkerboard mode that is present for
the standard (non-preconditioned) Euler code near the stagnation points is
eliminated with the proposed preconditioning. In Figure 19 the numerical
results obtained on a finer mesh can be seen, compared with the exact

Figure 18.
Cp distribution on the
bump for the coarse
mesh, with and without
preconditioning

Figure 19.
Cp distribution on the
bump for the fine mesh,
compared with a BEM
(incompressible
potential flow)
computation
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distribution. Finally, in Figure 20 the Cp distribution for the second example is
shown (Joukowski profile at M = 10–3, with an angle of attack α = – 0.89°)
compared with the analytical potential flow solution obtained from conformal
mapping techniques.
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